
N91-20038

1990 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

MODEUNG OF FLOW SYSTEMS FOR IMPLEMENTATION UNDER KATE

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DIVISION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. Jonathan E. Whidow

Assistant Professor

Florida Institute of T¢_ology

Department of Chemical Engineering

Data Systems

Technical and Information Systems

Ms. Carrie Belton

August 30, 1990

University of Central Florida
NASA-NGT-60002 Supplement: 4

488

ABSTRACT

The modeling of flow systems is a task currently being

investigated at Kennedy Space Center in parallel with the

development of the KATE artificial intelligence system used for

monitoring diagnosis and control. This report focuses on various

aspects of the modeling issues with particular emphasis on a

water system scheduled for demonstration within the KATE

environment in September of this year. LISP procedures were

written to solve the continuity equations for three internal

pressure nodes using Newton's method for simultaneous nonlinear

equations.

_9

SUMMARY

KATE is a model-based expert system being developed at

Kennedy Space Center for the monitoring, diagnosis and control of

launch operations. This work focused primarily on modeling issues

associated with the construction of the knowledge-base for a

water tanking demonstration system.

In order to accurately predict expected values of various

sensor readings in the water system for various flow

configurations, the model used for simulation by KATE had to be

modified. The original model of the flow network used a single

mass continuity equation which required an iterative solution for

an internal pressure node at each increment of time. In order to

sufficiently model the process for certain combinations of valve

positions, three mass continuity equations were needed. As a

consequence, the values of three unknown internal pressure nodes

were then required for solution of the resulting nonlinear

equations at each time step.

Various methods were examined for the solution of the three

simultaneous nonlinear equations. Newton's method was ultimately

chosen for implementation in the KATE knowledge-base due to its

speed of convergence. In general, Newton's method requires an
initial starting value for the solution vector which is

sufficiently close to the actual solution. Testing of the method

indicated that initial guesses provided within physical

constraints of the system, converged. The concern over guaranteed

convergence resulted in the more stable Steepest Descent

minimization method to also be examined. The time required for

convergence of this method however was more than an order of

magnitude greater than Newton's method. Both algorithms were

encoded in LISP for use by KATE.

Additional LISP code had to be included in the procedure

written to perform Newton's method in order to prevent the

generation of error messages. The source of the error messages

came from discontinuity in the modeling equations which would

result from various valve positions. The discontinuities resulted

in a singular matrix being formed in the program and hence the

resulting errors. The method used to avoid the error generation

in effect looked at all possible valve combinations and flow

conditions and dealt with each as necessary.

Although the model complexity was increased in this work

over previous work, there are still various simplifications
included in the model which may cause severe inaccuracies during
simulation under certain conditions. A discussion of these

issues, as well as a discussion on modeling of more complex

cryogenic systems is also included in this report.

V

4_

Section

I

II

2.1

2.2

III

3.1

3.2

IV

V

VI

VII

TABLE OF CONTENTS

Title

INTRODUCTION

PROCESS MODELING

The ALO-H20 Model

Modeling of Cryogenic Fluids

SOLUTIONS FOR SYSTEMS OF NONLINEAR EQUATIONS

Newton's Method

Steepest Descent Method

RESULTS AND DISCUSSION

CONCLUDING REMARKS

APPENDIX

REFERENCES

x iJ

491

I. INTRODUCTION

Investigations in the use of Artificial Intelligence to aid

in launch operations began at Kennedy Space Center in the early

1980's. The first implementation of AI at KSC was an expert

system developed for the monitoring of liquid oxygen. LES or

Liquid oxygen Expert System was the predecessor to the present

system being developed at KSC (KATE). KATE or Knowledge-based

Autonomous Test Engineer has been under development since 1985.

KATE is a frame-based expert system which has been developed

within the Common LISP programming environment.

Present work at KSC is focused on the continued development

of the KATE system to ultimately achieve autonomous launching

capabilities. This development effort, which is being supported

by Boeing, requires a series of demonstrations on various

hardware systems. In 1989, a demonstration of KATE's ability to

monitor, diagnose and control was given on a scaled down version

of the shuttle environmental control system. This year, a similar

demonstration will be given on a water tanking system which is

modeled after the liquid oxygen loading system. For 1991 another

demonstration will be given this time on a liquid nitrogen

loading system.

With each successive demonstration, the complexity of the

task increases. For KATE to operate on any process, a knowledge-

base must be created from which a simulation can be run. It is

through the running of this simulation, that allows KATE to

perform monitoring, diagnosis and control tasks. Hence the model

of the process becomes a critical component of the overall

system.

The objective of this work was to address various modeling

issues which are of concern in the knowledge-base construction.

In particular, the ALO water model was the primary focus of the

effort. This report however, also includes observations and

recommendations with respect to other models which are under

development within the KATE environment.

V

492

II. PROCESS MODELING

All of the demonstrations for KATE under the ALO project

will be based on flow processes. For the systems under

consideration a single component is being transported without

chemical reaction, hence, individual component mass continuity

equations are not required. A general mass continuity equation

for a given can be written for any pure, non-reacting flow system
as follows:

(2-1) Mass In - Mass Out = Mass Accumulation

2.1 The ALO-H20 Model

For the conditions in which the ALO - water demonstration

will be operated, water can be considered an incompressible

fluid. In addition, the assumption of isothermal operation can be

made, since ambient temperatures are present throughout the

system. As a consequence, the density is constant in time and

space and the general balance can be written in terms of flow

rates since the mass flow rate is the product of density and

volumetric flow rate. Furthermore if we write the continuity

equation around a section of pipe filled with liquid we can

consider the process to be effectively at steady state at any

given instant of time. Hence the continuity equation can be

simplified to:

(2-2) Flow In = Flow Out

The process flow diagram for this system, which can be

generated by KATE, is shown in Figure i. Indicated on the Figure,

are three distinct sections in which the equation for continuity

of mass is applied. The three modeling equations around these

points are:

Section i:

(2-3A) Pump Flow = Recycle Flow + Platform Flow

Section 2:

(2-3B) Platform Flow = Drain Flow + Vehicle Flow

Section 3:

(2-3C) Vehicle Flow = V-Tank Flow + Engine Flow

where:

Pump Flow = The total flow from both pumps.

Recycle Flow = The flow recirculated to the storage tank.

Platform Flow = The flow lifted to the elevated platform.

Drain Flow = The flow out the drain valve.

Vehicle Flow = The total flow going to the vehicle.

V-Tank Flow = The flow to the vehicle tank.

v

493

494
ORIGI_,_AL PA_E IS

OF POOR QUALITY

\

Engine Flow = The flow to the engine nozzle and drain.

The flow rate of water through a pipe, valve or fitting can

be determined from the equation:

(2-4) Q = Cv(_p) 112

where:

Q = the volumetric flow rate.

a P = the pressure drop over the hardware.

Cv = the flow coefficient for the hardware.

For a valve the flow coefficient is typically determined from

manufacturer's data. The value of C v is defined as the flow of

water at 60 degrees Fahrenheit in gallons per minute at a

pressure drop of 1 pound per square inch across the valve. For a

pipe or fitting the value of C v can be determined from the

equation:

(2-5) Cv = (K__) 2

where:

d = the inside diameter of the pipe or fitting in inches.

K = the coefficient for resistance.

Fluid velocity through a pipe, valve or fitting is obtained

at the expense of static head. The coefficient for resistance K

is the proportionality constant which relates head loss to

velocity through the relationship:

(2-6) h E = KV___2

2g

where:

h L = the head loss through the hardware.
v = the fluid velocity.

g = acceleration of gravity.

Values of K for fittings and hence Cv through the use of equation
2-5 are given in various handbooks. For a given fitting or valve

of fixed size, K is constant. For flow through a straight pipe

the value of K can be determined from the equation:

(2-7) K = f(L/D)

where:

f = the friction factor

L/D = the length to diameter ratio for the pipe.

The friction factor is a function of the Reynolds number

=

495

which can be obtained from published homographs or iteratively

through equations such as the yon Karman-Nikuradse formula:[l]

(2-8) [f]-i/2 = 4.0 log (Re[f] I12) - 0.4 (Re > 4000)

For a given section of the process a single flow coefficient

(or admittance) can be obtained by considering the individual

flow coefficients for the valves, fittings and sections of pipe

which make up the section as a series of resistances to flow.,The

admittance is in effect a reciprocal resistance. The effective
admittance for n resistances in series can be obtained from the

relationship:

(2-9) A = 1

[(I/Cvl) e + (i/Cv2) e + + (i/Cvn)L] 11_

Rewriting equations 3-3A through 3-3C in terms of

differential pressures and effective admittances leads to:

(2-10A) AI[PP - pl] I/2 = A2[pl - STP] I12 + A3[pl - (HP + p2)]I12

(2-10B) A3[_/I - (HP + p2)] I12 = A4[(p2 + EP) - ATM] I12 + A5[p2 -
p3]

(2-IOC) A5[p2 - p3] I12 = A6[p3 - VTP] I12 + A7[p3 - ATM] I/z

where:

PP = the pump discharge pressure

STP = the storage tank pressure

VTP = the vehicle tank pressure

HP = the head pressure loss from the elevation change

EP = the head pressure gain from the elevation change

ATM = the barometric pressure

pl = pressure at point 1

p2 = pressure at point 2

p3 = pressure at point 3

A1 - A7 = admittance values for each branch

At each of the three points, the flow branches into two streams

and an unknown pressure node is developed. For a given instant of

time all of the parameters except the internal pressures can

either be calculated directly (e.g. STP) or assumed constant

(e.g. AI). Hence we are faced with the simultaneous solution of

three nonlinear equations.

2.2 Modeling of Cryogenic Fluids

The modeling of flow systems involving cryogenic fluids,

involves much more complexity. If it could be assured that the

fluid was only in the liquid phase, the physical properties and

496

x

flow characteristics are less understood then those of water. In

reality however, some vaporization of the fluid will occur. This

gives rise for the need to model the heat transfer in the system

as well as mass continuity. The degree of heat transfer will

effect the stream quality and hence the thermodynamics of phase

equilibrium will also need to be accounted for.

To sufficiently model this process will require a large

effort. Equation 2-1 can no longer be simplified to get equation

2-2 as we are now dealing with a two phase compressible fluid.

There have been two approaches taken to model the two phase flow

problem: (i) a homogeneous approach in which the two phases are

treated as a single phase with averaged fluid properties, and (2)

a separated-flow model, in which the two phases are considered

artificially segregated.[2] Lockhart and Martinelli [3] developed

a semiempirical correlation segregated flow model for flow in

horizontal tubes. A modification of this correlation has been

shown to give good accuracy for cryogenic nitrogen. [4]

The Lockhart and Martinelli correlation calculates a two

phase pressure drop by determining a correction factor _2L which

is applied to the liquid phase pressure drop. The correlation for

adiabatic two phase pressure drop data is:

(2-11) (Ap /_L) Tp = CZ L (&p /aL) L

where:

(ap /nL) TP = pressure drop per length for two phase flow

(_p /aL) L = pressure drop per length for liquid flow

The correction factor _L is determined from the relationship:

(2-12) _L = (X2 + CX + 1) I/2 / X

where C is an empirical constant ranging from 5 (when both phases

are in laminar flow) to 20 when both phases are turbulent. The

parameter X is given by:

(2-13) = C Re m 2

CG (ReL) _ L

where:

C L and n are empirical constants for the liquid phase

CG and m are empirical constants for the gas phase

Re G = gas phase Reynolds number

Re L = liquid phase Reynolds number
x = the vapor mass fraction (quality)

9L = the liquid phase density
= the gas phase density_G

Since in reality, heat transfer will be occurring in the

v

497

system, a modified differential version of equation 2-11 must be

coupled with an energy balance and numerically integrated along

the length of the tube to get the total frictional pressure drop.

This process is complicated by the fact that the physical

properties and hence Reynolds numbers will be changing along the

tube length. Also the change in the state variables will result

in variations in the fluid quality.

The change in fluid quality results in a change in the bulk

fluid velocity and consequently a change in fluid momentum. Hence

a momentum pressure drop must be added to the contribution from

the frictional pressure drop to calculate a total pressure drop.

The equation to calculate the momentum pressure drop is:

(2-14) Pm= Cm (ML + MG) z / gc _L A2

where the correction factor 0m for the momentum pressure drop is
given by:

(2-15) (i - 2- (I - 2 + /"
RL. 2 RL, I _ 1 - RL, 2 1 - RL,

R L is the volume fraction of liquid phase where the subscript 1

indicates inlet conditions and the subscript 2 indicates outlet

conditions. R L is a function of the Lockhart-Martinelli parameter
X:

(2-16) R L = X / (X 2 + CX + I)I/2

498

t J
\ /

III. SOLUTIONS FOR SYSTEMS OF NONLINEAR EQUATIONS

As discussed above, improved modeling of the ALO- H20 system

requires the numerical solution of simultaneous nonlinear

equations. Two distinct groups of methods are the most commonly

employed for this task: functional iteration and minimizing

methods. Both of the aforementioned methods were considered for

this study and LISP functions were written for implementation in

the KATE knowledge-base. A brief description of the rational

behind these schemes is presented here.

3.1 Newton's Method

The specific technique used under the functional iteration

category is known as Newton's method. It has the advantage over

minimization methods in the speed of convergence of the

algorithm. This method is an n dimensional extension of the 1

dimensional Newton-Raphson algorithm. Hence to help illustrate

the method, the 1 dimensional case will be considered first.

Consider a function f which is twice continuously
differentiable in an interval of interest. Let x0 be an

approximation to the root p (i.e. f(p) = 0) of the function such

that the first derivative f'(x 0) is not equal to 0. The function

f(x) can then be approximated with a Taylor series expansion

about the point x ° as follows:

(3-1) f(x) = f(x 0) + (x - x 0) f'(x 0)

Since f(p) = 0 the above equation can be rewritten with x = p as:

(3-2) 0 = f(x 0) + (p - x 0) f'(x 0)

Solving for p gives:

(3-3) p = x 0 - f(x °) / f'(x 0)

This gives rise to the Newton-Raphson algorithm which involves

generating the sequence Pn defined by:

(3-4)
!

Pn = Pn-1 - f(Pnl) / f (Pn-1)' (n > I)

This sequence is generated in the algorithm until successive

values of Pn and Pnol are within a specified tolerance. This

method is illustrated graphically in Figure 2. It is seen that at

each iteration a new approximation of the root Pn is obtained

from the slope of the tangent to the function evaluated at the

previous approximation Pn-1 (i.e. the first derivative).

The extension of this method to n dimensions is relatively

straight forward. For n dimensions, there are n functions of the

4_

Ii

,cI
o

4.)

X

o
4.3

q)
Z

o

0

4-I

14

H

13
-r,l

H

500

n independent variables. Analogous to equation 3-1 for the 1

dimensional case, a Taylor's expansion about an approximate

solution vector x e = (xl °, x20, ,Xn°) t can be truncated after

the first degree terms for each of the n functions.

To illustrate this, we can consider the two dimensional

case. The results of the Taylor approximations leads to:

(3-5A)

(3-5B)

f1(x1,x2) = f1(x10,Xz 0) +

+

fz(Xl,X2) = f2(x1°,xz 0) +

+

_f___iIX10,X20) [X I - Xl0]

_X I

___f0(x1°,x2°) [xz - x2°]
ax 2

!_x1°,x2 °) [xl - xl°]
%x I

%f2_x10,X2 0) [X 2 - Xz 0]

AS with equation 3-2 the value of the functions fl and f2 is zero

at the roots Pl and p.. Rearranging equations 3-5A and 3-5B,

wlth Pl and P2 respectively and putting intoreplacing x I and xz ¢
matrix notation glves:

(3-6) J(x1°,x2 °) y = - b

where:

J __

_f10(x1°,x2°) , _f1_x1°,x2°)
x I _ x 2

(xl°,x2°), °,x2°)
_x I _x 2

y

b

fl (Xl 0, X20)
f2 (Xl0, X20)

The matrix can be solved for y by multiplying both sides of

equation 3-6 by j-1. Then in a manner analogous to equation 3-4

new guesses are generated for the roots repeatedly until

convergence within the desired tolerance is obtained.

Hence for the n dimensional case, the n functions require n

partial derivatives to be evaluated. The result of this

differentiation is placed in an n x n matrix known as the

501

Jacobian matrix. The n elements in the first row of this matrix

contains the results of differentiating th_ first function with

respect to each of the n variables, similarly the nth row
elements contain the differentiation of the nth function with

respect to the h variables. Although the n equations can be

solved by inverting the Jacobian matrix, in practice an iterative

technique would be used [3].

3.2 Steepest Descent Method

The specific method investigated under the category of

minimization techniques is known as the method od steepest

descent. Although the minimization methods will generally

converge slower than the iterative methods they will generally

converge with any initial approximation. The method of steepest
descent determines a local minimum for a multivariable function

G(x) defined by:

(3-7) G(XI'X2' 'xn) = [fi(x1'x2' ,Xn)]2

where each function fi(xl,x2, ,Xn) = 0. An exact solution at x

= (Xl,X2, ,xn) t is determined when the function G is zero.

The algorithm for finding the solution can be summarized as

follows:

i. Evaluate G at an initial approximation x ° =

, I Xn 0)(X10,X20 t

2. Determine a direction from x ° that results in a

decrease in the value of G.

3. Decide the amount which should be moved in this

direction and call the new value x I.

4. Repeat steps 1 through 3 with x ° replaced by x I"

From calculus, the Extreme Value Theorem implies that a

single variable differentiable function has a minimum when the

derivative is zero. This can be extended to a multivariable

function in that a minimum exists at x when the gradient is zero.

Hence the solution vector x occurs where:

(3-8) C(X) = [_G(x) , _G(x) , _S(x) It = 0

_x I _x 2 _x n

Explanation of the logic involved in the determination of

steps 2 and 3 above is detailed and of little value to this

report since this method was not actually implemented. Further

details of this method are given by Burden and Faires [3].

502

IV. RESULTS AND DISCUSSION

The source code for the solution of the modeling equations

is given in the Appendix. Comments have been included in the code

to aid in any future modifications. The LISP routine had to be

capable of handling not only the normal situation of forward flow

(i.e when the pump is on) but the back flow condition when the

pump is off. In addition various valve configurations leading to

zero admittance values had to be addressed. As a consequence,

much of the code written was aimed at dealing with these

"abnormal" situations can occur.

A example of the problem encountered with particular values

of zero admittance can be shown if say both A4 and A5 in equation

2-10b are equal to zero. This indicates there is no flow in

either the fourth or fifth legs in the second section of pipe.

Hence the flow in the third leg must also be zero and either A3

must be zero or the differential pressure in the leg must be

zero. In either case the original treatment will cause problems

in the Jacobian matrix. Having A3 also zero would cause J to

become singular, while a zero differential pressure would cause

the element J2,2 to go to infinity. Comments within the code try
and address the logic for each of the cases encountered and hence

no further discussion will be given on them.

The program developed to solve the three internal pressure

nodes by Newton's method was loaded into the KATE system and a

simulation run. Although all possible combinations of events

which could occur were not tested, the system worked well on

those that were tested. Figure 3 shows a plot of the values for

pl, p2 and p3 during a simulation run. Six distinct changes were

made in the system in order to observe the response by the

program. These changes are labeled A through F on Figure 3.

When the system was first started pl was at approximately 52

psi as a single pump was operating. As the vehicle tank was

filled a slight decrease in pl was observed while p2 and p3

showed increases. This behavior is expected as pl drops some

since the pressure in the storage tank decreases, while p2 and p3

increase due to the filling, and subsequent head pressure, of the

vehicle tank. At point A the drain valve is opened. This is

equivalent of changing A4 to a non-zero value. Again, the results

are expected as little effect is observed on pl and p3, however

p2 has an immediate drop in pressure.

At point B the valve is shut again and the system responds

accordingly. At point C the second pump is turned, resulting in

pressure increases throughout the system. Point D signifies the

start of back flow as the pumps were stopped. As expected pl has

an immediate drop in pressure, while p2 and p3 slowly decline. As

shown on the plot, p3 is greater than p2, which is greater than

503

N

0

0)

0
f-I

_3

I-4

504

\ i

pl as required for back flow. At point E, the valves to the

engine section (i.e. AT) were opened. Since flow is now draining

through the engine as well as the transfer lines, the rate of

pressure decrease in p2 and p3 should become greater as is

observed.

The last change made to the system (point F) was to set A3

to zero. At this point, pl equalizes to the storage tank pressure

as expected, while a sudden increase is observed in p2 and p3.

Again this is expected since less area is available for flow.

_5

V. CONCLUDING REMARKS

Although a liquid water transfer system is a relatively easy

system to model, various assumptions are being used to allow for

real-time implementation. For example, the use of an effective

flow coefficient for each section of the transfer hardware was

used in the model. Although the values used can be readily

determined for a given set of conditions they will change as

conditions change since the resistance coefficient depends on the

Reynolds number which in turn depends on the flow.

The initial values being used in the knowledge-base are

approximated assuming highly turbulent flow. In the highly

turbulent regime the friction factor does in fact become constant

and hence fairly accurate simulation values could be obtained.

When the pumps are turned off however and the water drains back

into the storage tank the flow regime will not be highly

turbulent and I anticipate substantial error to be present if the

flow coefficients are not adjusted.

As an example of the magnitude of the error which could be

expected let's consider water flowing through a i0 foot section

of 1 inch smooth pipe in highly turbulent flow. The lowest

Reynolds number for highly turbulent flow in this size pipe is 8

x 105 . This corresponds to a friction factor of 0.023. Using

equation 3-7 with a L/D ratio of 120 gives a resistance

coefficient of 2.76 and a flow coefficient of 18.00. If the flow

is reduced to by one tenth during say a pump failure, the

Reynolds number will be dropped proportionately. The new value of

the friction factor will be .025 resulting in a new resistance

coefficient of 3.0 and a new flow coefficient of 17.26. The

increase in the resistance translates into an 8.8% error in the

calculation of pressure drop from the model if a correction is

not made.

As the complexity of the systems to be modeled increases,

more simplifications will be required in order to allow real-time

simulations to be carried out. With cryogenic systems, the

simplifications may prove to cause substantial error in the

predictive ability of the model. It is my belief that before the

KATE system can adequately deal with systems of increased

complexity, a methodology for verifying and updating model

parameters needs to be developed. In some instances, this could

be done by comparing predicted values from the simulation to

sensor data within tolerance limits. If drift in the predictive

abilities is observed over time, the model parameters could be

modified to correct for it. Monitoring of the model base would

probably require the use of a distributed processor to analyze

trends in the data.

5O6

In addition to updating model parameters, it may also be

necessary to have separate modeling equations under different

conditions. For example, the modeling of line chill down requires

a much higher degree of model sophistication due to the unsteady

state heat transfer involved than the modeling after a thermal

steady state has been reached.

\ /

507

VI. APPENDIX

5O8

;1 This variable is used to account for the elevation head above the nozzle bleed and drain
_;; A 1.5 foot elevation was assumed

::

(defvar nozzle-head 0.65)

;;

;; Function to check if two numbers are essentially equal.

::

(defun almost-equal (x y)

(< (abs (- x y)) .000001))

;;

;; Function to count the number of zero admittances.

::

(defun count-zeros (list)

(do* ((cnt O)

(mlist list (cdr mlist)))

((null mllst) cnt)

(when (zerop (car mlist)) (incf cnt))))

;;;_;;;;;;;;;;;;;;;;;;;;;;

;; Function to determine if any complex numbers were encountered in

;; which case the solve routine will exit with an error message.

::

(defun cmplx-chk (list)

(do* ((cnt O)

(nd ist list (cdr mllst)))

((null mlist) cnt)

/ (when (complexp (car mlist)) (incf cnt))))

;;;;;;;;:;:;;;;;:;;;

;; Function to compute the square root of the pressure difference in the first leg.

;; Logic is included to avoid dividing by zero in the Jacobian matrix by returning the symbol DELP0

;; when the differential pressure is zero.

;; Logic is also included to avoid the return of complex numbers.

::

(defun pvarl (pl ppump)

(cond ((> ppump pl)

(sqrt (- ppump pl)))

{(almost-equal pl ppump)

'delpO)

(t (- (sqrt (abs (- ppump p])))))))

;; Function to compute the square root of the pressure difference in the second leg.

;; Logic is included to avoid dividing by zero in the Jacobian matrix by returning the symbol DELP0

;; when the differential pressure is zero.

;; Logic is also included to avoid the return of complex numbers.

::

(defun pvar2 (p1 st-press)

(cond ((> pl st-press)

(sqrt (- pl st-press)))

((almost-equal pl st-press)

'delpO)

(t (- (sqrt (abs (- pl st-press)))))))

5O9
OR/Gt_L_L PAGE IS

OF POOR QUAL/Ty

;; Punction to compute the square root of the pressure difference In the third leg

;; Logic Is included to avoid dividing by zero in the Oacoblan matrix by returning the symbol DELPO

;; when the differential pressure is zero.

;; Logic is also included to avoid the return of complex numbers.

(defun pvsr3 (pl p2 head-press}

(cond ((> pl (+ head-press p2))

(sqrt (- p1 head-press p2)))

((almost-equal pl (÷ head-press p2))

"delpO)

(t (- (sqrt (abs (- (+ p2 head-press) pl)))))))

;; Function to compute the square root of the pressure difference in the fourth leg.

;: Logic is included to avoid dividing by zero in the Jacobian matrix by returning the symbol DELPO

:: when the differential pressure is zero.

;; Also if p2 is less than atmospheric pressure or the lines are not filled the symbol delp0

;; is returned to indicate no true flow.

|defun pvar4 (p2 ln-sys)

(cond

({not (> in-sys drain-capacity)) "delpO)

((> (+ p2 elevatlon-press) amblent-atm)

(sqrt (- (+ p2 elevatlon-press} ambient-arm)))

((almost-equal p2 ambient-arm)

"delp0)

(t "delpO)))

;; Function to compute the square root of the pressure difference in the fifth leg.

;; Loglc IS included to avoi d dlvidlng by zero In the Jacoblan matrix by returning the symbol DELl0

;: when t_e differential pressure is zero.

;; Logic is also included to avoid the return of complex numbers.

::_ ,, -.-.-. ..

(defun pvar5 (p2 p3)

(cond

((> p2 p3)

(sqrt (- p2 p3)))

((almost-equal p3 p2)

'delp0)

(t (- (sqrt (abs (- p2 p3)))))))

°'''_" io°.i. .°°, ..

;; Function to compute the square root of the pressure difference in the sixth leg.

_; Logic is included to avoid dividing by zero In the Jacoblan matrix by returning the symbol DELPO

;; when the differential pressure is zero.

;; Logic IS also included to avoid the return of complex numbers.

;; Also if the lines are not filled the symbol delp0 Is returned to indicate no true flow.

::

(defun pvar6 (p3 vt-press In-sys)

(cond

((not (> in-sys llne-capaclty}) 'delpO)

((> p3 vt-press)

(sqrt (- p3 vt-press)))

((almost-equal p3 vt-press)

'delp0)

(t (- (sqrt (abs (- p3 vt-press)}))))}

510

OP,IGii_AL PAGE
oF PO_ QU_.L_77

_; Function to compute the squ•re root of the pressure difference in the seventh leg.

;; Logic is included to •void dividing by zero in the Jacobi•n matrix by returning the symbol DEEP0

;; when the differenti•l pressure is zero.

;; Also if p3 is less than •tmospheric pressure or the lines are not filled the symbol delp0

1; is returned to Indlc•te no true flow.

;;_;1_l_$_;3t_ll_;lt3_;;;;_;;;1;;;_$;;_;l_;_;_;_$_l_1lt;_;_I_;;_$_t1$s$_lf_t_$_;_1_

(defun pvar7 [p3 in-sys)

(rend

((not (> in-eye line-cap•city)) 'delpO)

((> (+ p3 nozzle-head) •_ient-•tm)

(sqrt (- (+ p3 nozzle-head) ambient-•tm)))

((almost-equal p3 amblent-atm)

• de lpO)

(t ' delpO)))

;; Function for the material balance around section I.

;; [Flow from pump - Reclrculatlon Flow - Flow to the elevated platform - 0]

;; Logic is included to check to make sure the functions PVARI• PVAR2 & PVAR3 return • number.

;; Return of the symbol DELP0 from these functions occurs when • pressure differential of zero is

;; encountered. If DELP0 is returned the contribution from the leg is set equal to zero.

;; Logic is also included to have the function F1 return zero if any two admittances passed to the

;; function are zero. This avoids discontinuity in the material balance.

::

[de fun fl (pl p2 ppump st-press head-press al a2 a3)

(rend

[[or (and (zerop al) (zerop a2))

(and (zerop al) (zerop •3))

(and (zerop a2) (zerop a3)))O)

it

(- (cond ((numberp (pvarl pl ppump))

(* al (pvacl pl ppump)))

[t 0))

(+ (rend ((numberp [pvar2 pl st-press))

(* a2 (pvar2 pl st-press)))

(t 0))

(rend ((numberp (pvar3 pl p2 head-press))

(* a3 (pvar3 pl p2 head-press)))

(t 0)))))))

;: Function for the material balance around section 2.

;; [Flow to the elevated platform - Flow toward the vehicle - Flow out the drain - 0]

;; Logic is included to check to make sure the functions PVAR3, PVAR4 & PVAR5 return • number.

;; Return of the symbol DELP0 from these functions occurs when • pressure differential of zero is

;; encountered. If DELP0 is returned the contribution from the leg is set equal to zero.

;; Logic is also included to have the function F2 return zero if any two admittances passed to the

;; function are zero or the functions PVAR4 and PVAR5 return DELP0. This avoids discontinuity in

;; the material balance.

(defun f2 (pl p2 p3 head-press a3 a4 a5 In-sys}

(rend

({or (and (zerop a3) (zerop a4))

(and (zerop a3)(zerop a5))

(and (zerop a4)(zerop a5))

(and (not (numberp (pvar4 p2 InmsyS)})(not (numberp (pvar5 p2 p3)))))O)

[t

[- (cond ((numberp [pvar3 pl

(* a3 (pvar3 pl p2

(t O))

(+ (cond ((numberp (pvar4

(* a4 (pvar4 p2

(t O))

(cond ((numberp (pvar5

(* a5 (pvar5 p2

(t 0)))))))

p2 head-press))

head-press)))

p2 in-sys))

in-sys)))

p2 p3))

p3)))

511 ORIGINAL PAqF i_

OF POOR QUALITY

;; Function for the raaterlal balance around section 3.

;: [Flow toward the vehicle - Flow to the vehicle tank - Flow to the engine nozzle and bleed - 0]

;; Logic is included to check to make sure the functions PVAR5, PVAR6 & PVAR7 return a number.

;; Return of the symbol DELP0 from these functions occurs when a pressure differential of zero is

;; encountered. If DELP0 is returned the contribution from the leg is set equal to zero.

;; Logic is also included to have the the function F3 return zero if admittances a5 and e7 are passed

;; to the function as zero or the functions PVAR6 and PVAR7 return DELP0. This avoids discontinuity

;$ in the material balance.

::

(defun f3 (p2 p3 vt-press a5 a6 a7 ln-sys)

(cond

((or (and (zerop a5) (zerop aT))

(and (not (numberp (pvar6 p3 vt-press ln-sys))) (not (numberp (pvar7 p3 in-sys)))))O)

(t

(- (cond ((numberp (pvar5 p2 p3))

(* e5 (pvar5 p2 p3)))

(t O))

(+ (cond {(numberp (pvar6 p3 vt-press In-sys))

(* a6 (pvar6 p3 vt-press in-sys))}

(t o))

(cond ((numberp (pvar7 p3 ln-sys))

(* a7 (pvar7 p3 In-sys)))

(t o)))))))

V

;; Function to compute the element in row 1 and column 1 of the Jacobian matrix. This function

;; represents the partial derivative of the function FI with respect to the variable Pl.

;; Logic is included to check to make sure the functions PVARI, PVAR2 & PVAR3 return a number.

;; Return of the symbol DELP0 from these functions occurs when a pressure differential of zero is

;; encountered. If DELP0 is returned the contribution from the leg is set equal to zero.

;; Logic is also included to have the the function Oll return one if any two admittances are passed to

;; the function as zero or the flow in the leg is zero. This prevents the Jacoblan matrix from

;; becoming singular.

::

(defun ill (pl p2 ppump st-press head-press al a2 a3)

(cond

((or

{and (zerop el)(zerop a2)}

{and {zerop a2){zerop a3)}

(and (zerop al){zerop a3)})l)

(t

(let* ((result

(+ (cond ((numberp (pvarl pl ppump})

(/ (* -.5 el)

(abs (pvarl pl ppump))))

(t 0))

(cond ((numberp (pvar2 pl st-press))

(/ (* -.5 a2)

(abs(pvar2 pl st-press))))

(t O))

(cond ((numberp (pvar3 pl p2 head-press))

(/ (* -.5 a3)

(abs(pvar3 pl p2 head-press))))

(t 0)))))

(cond ((zerop result) I)

(t result))))))

512

ORIGh_IAL P._GE IS
OF POOR QUALITY

;;;;;;;;;;;;;;;:;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;s;;;;;s;;I;;;;;;;;_;;;;;;

j Function to compute the element in row 1 and column 2 of the Jacoblan matrix. This function

--_; represents the p•rtial derivative of the function F1 with respect to the variable P2.

;; This function Is also used for the element in row 2 •nd colunm I of the Jecobian matrix and hence

;; •1so represents the partlel derivative of function F2 with respect to the varla]_le PI.

;; Logic is Included to check to make sure the function PVAR3 returns • number,

3; Return of the symbol DELP0 from this function occurs when • pressure dlfferential of zero is

$; encountered. If DELP0 is returned the function is set equal to zero.

:::_'_;__::::::::::::::::::::::::::

(defun J12 (pl p2 head-press a3)

(cond ((numberp (pvar3 pl p2 head-press))

(/ (* .5 a3) (abs(pvar3 pl p2 head-press))))

(t 0)))

;; Function to compute the element in row 2 and column 2 of the Jacoblan matrix. This function

;; represents the partial derivative of the functlon F2 with respect to the variable P2.

;; Logic is included to check to make sure the functions PVAR3, PVAR4 & PVAR5 return • number.

;; Return of the symbol DELP0 from these functions occurs when a pressure dlfferentl•l of zero is

;; encountered. If DELP0 is returned the contribution from the leg is set equal to zero.

;; Logic is also included to have the the function J22 return one if any two admittances are passed to

;; the function as zero or there is no flow in the leg. This prevents the Jacoblan matrix from

$; becoming singular.

L

(defun J22 (pl p2 p3 head-press a3 a4 a5 In-sys)

(cond

((or

(and (zerop a3)(zerop a4))

(and (zerop a4)(zerop a5))

(and (zerop e3)(zerop a5))

(and (not (numberp (pvar4 p2 In-sys))) (not (numberp (pvar5 p2 p3)))))l}

(t

(let* ((result

(+ (cond ((numberp (pvar3 pl p2 head-press})

(/ (* -.5 a3)

(abs(pvar3 pl p2 head-press))))

(t 0))

{cond ((numberp (pvar4 p2 In-sys))

(/ (* -.5 a4)

(abs(pvar4 p2 in-sys))))

(t 0))

(cond ((numberp (pvar5 p2 p3))

(I (* -.5 aS)

(abs(pvar5 p2 p3))))

(t 0)))))

(cond ((zerop result) 1)

(t result))))))

;; Function to compute the element In row 2 and column 3 of the Jacobian matrix. This function

;; represents the partial derivative of the function F2 with respect to the variable P3.

;; This function is •lso used for the element in row 3 and column 2 of the dacoblan matrix and hence

;; also represents the partial derivative of function F3 with respect to the variable P2.

;; Logic is included to check to make sure the function PVAR5 returns a number.

;; Return of the symbol DELP0 from this function occurs when a pressure differenti•l of zero is

;; encountered. If DELP0 is returned the function Is set equal to zero.

(defun J23 (p2 p3 aS)

(cond ((nun0_erp (pvar5 p2 p3))

(/ (* .5 a5) (abs(pvar5 p2 p3))))

(t o)))

513
ORIGi;_,_/,. P_.GE i$

OF POOR QUALITY

;; Function to compute the element in row 3 and column 3 of the Jacoblan matrix. This function

3; represents the partial derivative of the function F3 with respect to the variable P3.

;; Logic is included to check to make sure the functions PVAR5, PVAR6 ; PVAR7 return a number.

;; Return of the symbol DELPO from these functions occurs when a pressure differential of zero is

;; encountered. If DELP0 is returned, the contribution from the appropriate leg is set equal to zero.

;; Logic is also included to have the the function J33 return one if admittances a5 & a7 are passed to

;; the function as zero or there is no flow in the leg. This prevents the Jacoblan matrix from

$; becoming singular.

;; t;;;;; ;;;;; ;; ;;;;;;;;;r;;;;;;r;;; :::::::::::::::::::::::::::::: ;;; ;;;;;;t ;; :::::::::::::::::::::::::::

(defun _33 (p2 p3 vt-press a5 a6 a7 in-sys)

(cond

((or (and (zerop a5) (zerop aT))

(and (not (numberp (pvar6 p3 vt-press In-sys)))(not (numberp (pvar7 p3 In-sys)))))l)
(t

(let* ((result

(+ (cond ((numberp (pvar5 p2 p3))

(/ (* -.5 aS)
(abs(pvar5 p2 p3))))

(t 0))
(cond ((numberp (pvar6 p3 vt-press in-sys))

(/ (* -.5 a6}

(abs(pvar6 p3 vt-press In-sys))))

(t o))
(cond ((numberp (pvar7 p3 In-sys))

(/ (* -.5 aT)

(abs(pvar7 p3 in-sys))))

(t 0)))))

(cond ((zerop result) 1)

(t result))))))

:::::::::::::::::::::::::::::::::::: ;;;;; :::

;; Function which is called by the solve function if any 5 admittance values are equal to zero.

;; The values returned depend on the exact configuration of valves being open and closed (0 admittance)

;;;l;;;;;;;;r;;;; ;;;;;;;; :: :::::::::::::::::::::::

(defun get-vals->4 (pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 aT)

(setq p3 vt-press)

(cond

((not (zerop al))

(setq pl ppump))

((not (zerop a2})

(setq pl st-press))

({not (zerop a3))

(setq pl + head-press (/ {+ pl p2 - head-press} 2))

(setq p2 (- pl head-press)))

((not (zerop a4))

(setq p2 amblent-atm))

((not (zerop a5))

(setq p2 vt-press))

((not (zerop a7))

(setq p3 (/ (* vt-press (square (/ a6 aT)))

(+ I (square (/ a6 a7))))) })

(values pl p2 p3))

V

514

OR!GINAL PAGE IS

OF POOR QUALITY

;;;;7_rs_;;_t7$7_;;_;;;lt_t;7ItIt;;t_l7;t_;;_;;;_;;;_;7;_;;;;1Itl_#$wI_;;7_l7$_#$;7s_ltl$$_$;t

Function which Is called by the solve function if any 4 admittance values mre eq[uml to zero provlded

I; that one of the zero values for admittance is a4 or aS.

17 The values returned depend on the exact configuration of valves belng open and closed (0 admittance}

(defun get-vale->3 (pl p2 p3 ppump st-press vt-press head-press al 82 a3 a4 a5 aS a"/)

(cond

((zecop a7)

(setq p3 vt-press))

(t

(set(; p3 (/ (* vt-press (square (/ a6 aT)))

(+ 1 (square (/ a6 aT)))))))

(cond

((and (not (zerop el)) (not (zerop a2)))

(setq pl (/ (+ st-press (* ppump (square (/ el a2))))

(+ 1 (square (/ al a2))))))

((and (not (zerop al)) (not (zerop a3)))

(setq pl ppump}

(setq p2 (- ppump head-press}})

((and (not (zerop el)) (not (zerop a4)}}

(setq pl ppump)

(setq p2 amblent-atm)}

((and {not (zerop al)}(not (zerop aS)}}

(setq pl ppun_)

{setq p2 vt-press))

((and (not (zerop el))(not {zerop a7)})

(setq pl ppump})

((and (not (zerop a2)) (not {zerop a3)))

(setq pl st-press)

(setq p2 {- st-press head-press)))

((and (not (zerop a2)) (not (zerop a4)))

(setq pl st-press)

(setq p2 emblent-atm))

{(and (not (zerop a2)) (not (zerop a5)))

(setq pl at-press)

(setq p2 vt-press))

((and (not (zerop a2))(not (zerop a7}))

(setq pl st-press))

((and (not (zerop a3))(not (zerop a4)))

(setq pl head-press)

(setq p2 amblent-atm}}

((and (not (zerop a3)) (not {zerop a5)))

(setq pl {+ vt-press head-press))

{setq p2 vt-press))

((and (not {zerop a3}} (not (zerop aT)}}

{setq p2 (- pl head-press)))

((and (not (zerop a4)} (not (zerop aT)}}

{setq p2 amblent-atm)}

((and (not (zerop s5})(not (zerop aT))}

(setq p2 p3)))

(values pl p2 p3))

515

ORIGINAL PAGE IS
OF POOR QUALITY

;;rI$$_$$::: $$$$$$$$;_I_t$1113#ttIIII$III$11;I$$;J;

;1 Function which Is called by the solve functlon if any 3 admittance values are tuque1 to zero provided

II that one of the zero values for admittance is a4 or aS, In addition, none of the following
;; conditions can exist for this function to be called:

;; el, a4 & a7 can not all be zero

1; a2, a4 & a7 can not all be zero

;; a2, a5 & a7 can not all be zero

l; The values returned depend on the exact conEiguratlon of valves being open and closed (0 admittance)

Ira;;;;; ::

(defun get-vals->2 (pl p2 p3 ppump st-press vt-press head-press al a2 a3 e4 a5 a6 aT)

(cond

((zerop a7)

(setq p3 vt-press))

(t
(setq p3 (/ (* vt-press (square (/ a6 a7)))

(+ I (square (/ a6 a7)) })))}

[cond

((and (zerop al)(zerop a2)(zerop a4))

(setq p2 p3)

(setq pl (+ p2 head-press)))

((and (zerop al)(zerop a2)(zerop aS)

(setq pl head-press)

(setq p2 amblent-atm})

((and (zerop al} (zerop a3)(zecop a4)

(setq pl st-press)

(setq p2 p3))

((and (zerop el)(zerop a3)(zerop a5)

(setq pl st-press)

(setq p2 amblent-atm}}

((and (zerop el)(zerop a4)(zerop a5)

(setq pl st-press}

(setq p2 (- st-press head-press)))

((and (zerop el)(zerop aS} (zerop a7)

(setq pl st-press)

(setq p2 (- st-press head-press)))

((and (zerop a2)(zerop a3)(zerop a4)

(setq pl ppump)

(setq p2 p3))

((and (zerop a2} (zerop a3} {zerop a5}

(setq pl st-press}

(setq p2 ambient-atm))

((and (zerop a2)(zerop a4){zerop a5)

(setq pl ppump)

(setq p2 (- ppump head-press)))

((and (zerop a3} (zerop a4)(zerop a5)

(setq pl {/ (+ st-press (* ppump (square (/ al a2))}}

(+ 1 (square (/ al a2))))))

((and (zerop a3)(zerop a4)(zerop a7))

(setq pl (/ (* vt-press (square (/ a6 a7)))

(+ 1 (square (/ a6 a7)))))

(setq p2 vt-press))

((and (zerop a3)(zerop a5)(zerop aT))

(setq pl (I (+ st-press (* ppump (square (/ ai a2))))

(+ I (square (/ al a2)))))

(setq p2 amblent-atm))

((and (zerop a4){zorop aS)(zerop a7))

(set(] pl ppump}

(setq p2 (- ppump head-press}))}

(values pl p2 p3))

v

V

516

ORIGINAL PAGE !$

OF POOR OUAUT'Y'

"_ #; Function which solves the nonlinear flow equations using Newton's method. This involves iterating
;; on the unknown internal pressures pl, p2 & p3 until convergence within a tolerance of .01 la

1; achieved. The solution procedure involves solving for the vector x, where each element of x

;; represents the difference in the guessed values for pl, p2 & p3 and the next approximation for

;; each. The equation which is solved is:

;; J x - F

;; The elements of the Jacobian matrix J and the vector F have been defined above. Solution of the

;; system of equations is accomplished by using the LTSP functions from the mathematics package

;; MATH:DECOMPOSE and MATH:SOLVE.

;; Logic is included to check for conditions which can not be solved directly by these functions and

;; therefore need special attention. Explanation of these special conditions is included within

;; the body of the code.

(defun solve (pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 a7 it ln-sys)
(rend

((and (almost-equal vt-press p2) (almost-equal vt-press p3) ;; stagnant system

(almost-equal pZ st-press) (almost-equal ppump st-press)) ;; Just return the

(values pl p2 p3)) ;; previous values

((and (almost-equal vt-press ambtent-atm) (< pl (- st-press 1))) ;; initialize system when the

(setq pl st-press) ;; function is first called

(setq p2 ambient-atm)

(aetq p3 ambient-atm)

(values p1 p2 p3))

(t

(rend

((and (almost-equal vt-press ambient-atm) (almost-equal pl st-press) ;; initialize the

(not (almost-equal ppump st-press)) (zerop it)) ;; recirculatlng

(setq pl (- ppump .1)) ;; eystem after

(setq p2 ambient-atm) ;; pump is first

(setq p3 amblent-atm))) ;; turned on

(cond

((and (zerop al) (almost-equal vt-press ambient-atm) ;1 when backflow occurs

+ (not (almost-equal head-press elevatlon-press))) ;; and the vt-press - atmospheric pressure

'] (setq p3 ambient-arm)) ;; set p3 to atmospheric pressure

((and (zerop al) (almost-equal vt-press amblent-atm)) ;; when backflow occurs

(setq p2 ambient-atm) ;; and the upper level piping has drained

(setq p3 ambient-atm)) ;; set p2 to atmospherlc pressure

((and (not (zerop al)) (almost-equal vt-press amblent-atm) ;; if the 20 foot riser is Just filled

(almost-equal head-press elevation-press)) ;; p3 is still equal to atmospheric

(setq p3 ambient-atm)) ;; pressure

((and (not (zerop al)) (almost-equal vt-press ambient-atm)) ;; before the 20 foot riser is filled

(setq p2 amblent-atm) ;; p2 and p3 are equal to atmospheric

(setg p3 ambient-arm))) ;; pressure

(cond

((almost-equal ppump st-press) ;; if the pump is off set the al admittance to zero

(setq al 0)))

(let*

((zero-ads (count-zeros (list al a2 a3 a4 a5 aT)))) ;; count how many admittances are zero
(cond

((> it 800) Too iterations exitmany the zolve routine

_. (values pl p2 p3))

: ((> zero-ads 5) ;; If all 6 admittances are zero set p3 to vt-press and return

(setq p3 vt-press)

(values pl p2 p3))

517

ORIGINAL PAGE' IS

OF POOR QUALITY

((> zero-ads 4) ;; If 5 adm/ttances are zero determine what to return from

(multlple-value-setq (pl p2 p3) ;; solve by calling the function get-vals->4

(get-vals->4 pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 aT))

(values pl p2 p3))

((and (> zero-ads 3) (or (zerop a4) 4zerop a5))) ;; if 4 adm/ttances are zero and a4 or 85

(multlpla-value-setq (pl p2 p3} ;; are zero, call the function get-vale->3

(get-vals->3 pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 aT))

(values pl p2 p3))

4(and (equalp vt-press ambient-arm) (zerop a_))

(setq pl (/ 4+ st-press (* ppump (square (/ al a2))))

(+ 1 (square (/ al a2)))))

(values p1 p2 p3))

((and (> zero-ads 2) (or (zerop aa) (zerop a5)) 7; if 3 admittances are zero and

(and (not (zerop al)) (not (zecop a4)) (not (zerop aT))) l; 84 or a5 are zero and in

(and (not (zerop a2)) (not (zerop a4)) (not (zerop a7))) ;7 addition (el, a4 & a7),

(and (not (zerop a2)) (not (zerop a5)) (not (zerop a7))))$$ (a2, a4 &aT) & (a2, a5 & aT)

(multlple-value-setq (pl p2 p3) 7; are not all zero, call the

(get-vals->2 pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 a7)) ;; function

(values pl p2 p3)) ;; get-vals->2

((and (zerop al) (zerop a5))

(setq pl (+ st-press))

(setq p2 (+ amblent-atm))

(setq p3 (/ (t vt-press {square (/ a6 aT)))

(+ I (square (/ a6 aT)))))

4values pl p2 p3})

;; if this point is reached and both al & a5 are

;; zero return the appropriate values

(t

(rend ;; if this is first iteration &

((and (zerop el)(zerop a2)(zerop a3)(zerop aT)(zerop It)) ;; al, a2, a3, & 87 are all zero,

(setq p3 (- vt-press I)) ;; adjust the Initial guess of p2

(setq p2 4- p3 I)) ;; and p3 to avoid divergence

(setq it I))

((zerop al)

(rend

((zerop it)

(setq p3 (- vt-press .1))

(setq p2 (- p3 .1))

(setq pl (- (+ p2 head-press) .1))

{setq it 1)))

(cond

((zerop a2)

(setq a3 O)

(setq pl (+ p2 head-press)))

((zerop a3)

(setq a2 O)

(setq pl st-press)}))

;; if this is the first iteration and al Im

;; zero adjust the initial guesses for the

;; pressures to avoid divergence

;; if both al & a2 are zero also set a3 to zero

;; in order to avoid discontinuity and adjust

;; the value of pl

;; if both al & a3 are zero also set a2 to zero

;; In order to avoid discontinuity and adjust

;; the value of pl

((zerop a3)

(cond _

((zerop it)

(setq pl (- ppump 1))

(aetq p3 (- vt-press 1))

(setg p2 (- p3 1))

(setq it 1)))

(cond

((zerop a2)

(setq al O)

{setq pl ppump))

((zerop a4)

(setq a5 O)

{setq p2 p3))

((zerop a5)

(setq a4 O)

(setq p2 amblent-atm))}}

;; if this is the first iteration and a3 is

;; zero adjust the inltial guesses for the

;; pressures to avoid divergence

;; if both a2 & m3 are zero also set al to zero

:: in order to avoid discontinuity and adjust

;; the value of pl

;; if both a3 & a4 are zero also set a5 to zero

;; in order to avoid discontinuity and adjust p2

;; if both a3 & a5 are zero also set a4 to zero

;; in order to avoid discontinuity, and adjust p2

518
OR,_G[NAL PAGE IS
OF POOR QUALITY

V

,!

_J

((zerop a5)

(tend

((zerop it)

(setq pl (- ppump 1))

(setq p2 (- pl 1 head-press))

(setq p3 (- vt-press 1))

(setq it 1)))

(cond

((zerop a4)

(setq a3 O)

(setq p2 (- pl head-press))))))

;; if a5 is zero and this is the first iteration

;; adjust the initial guesses for the pressures

:; to avoid divergence

;; if both a5 & a4 are zero also set a3 to zero

:: in order to avoid discontinuity and adjust

;; the value of p2

(let* ;; set up the vector b and matrix a to solve for x in the equation A x - b

((b (make-array 3 :Inltial-contents

"(, (fl pl p2 ppump st-press head-press al a2 a3)

,(f2 pl p2 p3 head-press a3 a4 a5 In-eye)

, (f3 p2 p3 vt-press a5 a6 a7 in-eye))))

(a (make-array ' (3 3) :Inltial-contents

"((, (ill pl p2 ppump st-press head-press al a2 e3)

, (J12 pl p2 head-press a3) O)

(, (J12 pl p2 head-press a3) , (J22 pl p2 p3 head-press a3 a4 s5 In-eye)

, (J23 p2 p3 a5))

(0 , (J23 p2 p3 a5) , {J33 p2 p3 vt-press a5 a6 a7 in-sys)))))

(x (multiple-value-blnd (c d) (math:decompose a) (math:solve c d b)))

(x (iterate a b x))) ;: This routine only needs to be used for lll-condltioned matrices

) :; & has been commented out.

(cond

((< (max (abs (aref x 0)) (abs (aref x 1)) (abs (aref x 2))) .01)

(values pl p2 p3))

(t

(setq it (+ it I)) ;; update the iteration number and obtain the next

(setq pl (- pl (aref x 0))) ;; value for the unknown pressures and then recurslvely

(setq p2 (- p2 (aref x I))) :; call solve until the tolerance is reached.

(setq p3 (- p3 (aref x 2))}

(solve pl p2 p3 ppump st-press vt-press head-press al a2 a3 a4 a5 a6 a7 it In-sys)

)))))))))

_ i _

;; This functon could be used if ill-condltioned matrices were being encountered. This does not seem

;; to be the case, however the code has been left for future reference.

::

(defun iterate (a b x)

{let* {(ax (math:multiply-matrices a x))

(r (m_ke-array 3 :element-type 'double-float

:Inltial-contents

'(, (- (aref b O) (aref ax 0}}

, (- (aref b I) (aref ax l))

, (- (aref b 2) (aref ax 2}))))

(y (multlple-value-blnd (e f) (math:decompose a) (math: solve e f r)))

(xx (make-array 3 :inltial-contents

• (, (+ (aref x O)(aref y 0))

, (+ (aref X I)(aref y l))

• (+ (aref x 2) (aref y 2))))))
(cond

((< (abs (max (- (aref x O) (aref xx 0)) (- (aref x I) (aref xx I)) (- (aref x 2) (aref xx 2))))

x)

(t

(setf (aref x O)(aref xx 0))

(serf (aref x 1)(aref xx l))

(setf (aref x 2)(aref xx 2))

(iterate a b x)))))

.0001)

519

ORIGINAL PAGE IS
OF POOR QUALITY

I ,

.

.

.

•

VII. REFERENCES

Denn, M. M., Process Fluid Mechanics, Prentice-Hall,

Englewood Cliffs, NJ, 1980.

Barron, R. F., Cryoqenic Systems, Second Edition, Oxford

University Press, New York, 1985.

Martinelli, R. C., and R. W. Lockhart, "Proposed Correlation

of Data for Isothermal Two-Phase Flow in Pipes", Chemical

En_ineerin_ Proqress, 45, I, 39, 1949.

Shen, P. S., and Y. W. Jao, "Pressure Drop of Two-Phase Flow

in a Pipeline with Longitudinal Variations in Heat Flux,

Advances in Cryogenic Enqineerinq, 15, Plenum Press, New

York, 1970.

Burden, R. L. and J. D. Faires, Numerical Analysis, Third

Edition, Prindle, Weber & Schmidt, Boston, 1985.

V

520

ORIGINAL PAGE IS

OF POOR QUAU'W

